Merging man and maths

mathcity.org

Ø Question # 1

i) From the given table we have

0 + 0 = 0 and 0 + 1 = 1

This show that 0 is the identity element.

ii) Since 1+1=0 (identity element) so the inverse of 1 is 1.

iii) It is clear from table that element of the given set

satisfy closure law, associative law, identity law and inverse law thus given set is group under \oplus .

Also it satisfies commutative law so it is an abelian group.

Ø Question # 2

Suppose $G = \{0, 1, 2, 3\}$

i) The given table show that each element of the table is a member of *G* thus closure law holds.
ii) ⊕ is associative in *G*.

iii) Table show that 0 is identity element w.r.t. \oplus .

iv) Since 0 + 0 = 0, 1 + 3 = 0, 2 + 2 = 0, 3 + 1 = 0 $\Rightarrow 0^{-1} = 0$, $1^{-1} = 3$, $2^{-1} = 2$, $3^{-1} = 1$

v) As the table is symmetric w.r.t. to the principal diagonal. Hence commutative law holds.

Ø Question # 3

(i) As $0 \in \mathbb{Q}$, multiplicative inverse of 0 in not in set \mathbb{Q} . Therefore the set of rational number is not a group w.r.t to ".".

(ii) *a*-Closure property holds in \mathbb{Q} under + because sum of two rational number is also rational.

b-Associative property holds in \mathbb{Q} under addition.

c- $0 \in \mathbb{Q}$ is an identity element.

d- If $a \in \mathbb{Q}$ then additive inverse $-a \in \mathbb{Q}$ such that a + (-a) = (-a) + a = 0.

Therefore the set of rational number is group under addition.

(iii) *a*-Since for $a, b \in \mathbb{Q}^+$, $ab \in \mathbb{Q}^+$ thus closure law holds.

b- For $a, b, c \in \mathbb{Q}$, a(bc) = (ab)c thus associative law holds.

c-Since $1 \in \mathbb{Q}^+$ such that for $a \in \mathbb{Q}^+$, $a \times 1 = 1 \times a = a$. Hence 1 is the identity element.

d- For
$$a \in \mathbb{Q}^+$$
, $\frac{1}{a} \in \mathbb{Q}^+$ such that $a \times \frac{1}{a} = \frac{1}{a} \times a = 1$. Thus inverse of *a* is $\frac{1}{a}$.

Hence \mathbb{Q}^+ is group under addition.

(iv) Since $\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \dots, \}$

a-Since sum of integers is an integer therefore for $a, b \in \mathbb{Z}$, $a + b \in \mathbb{Z}$.

b-Since a + (b + c) = (a + b) + c thus associative law holds in \mathbb{Z} .

c-Since $0 \in \mathbb{Z}$ such that for $a \in \mathbb{Z}$, $a + 0 = 0 + a = \mathbb{Z}$. Thus 0 an identity element.

d- For $a \in \mathbb{Z}$, $-a \in \mathbb{Z}$ such that a + (-a) = (-a) + a = 0. Thus inverse of *a* is -a.

(v) Since $\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \dots, \}$

For any $a \in \mathbb{Z}$ the multiplicative inverse of *a* is $\frac{1}{a} \notin \mathbb{Z}$. Hence \mathbb{Z} is not a group under multiplication.

\oplus	0	1
0	1	1
1	1	0

\oplus	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

Exercise 2.8 (Solutions)

TEXTBOOK OF ALGEBRA AND TRIGONOMETRY FOR CLASS XI Available online @ http://www.mathcity.org, Version: 1.0.0 FSc-I / 2.8 - 2

Ø Question # 4

As E + E = E, E + O = O, O + O = E

Thus the table represents the sums of the elements of set $\{E, O\}$. The identity element of the set is E because

E + E = E + E = E & E + O = O + E = E.

i) From the table each element belong to the set $\{E, O\}$.

Hence closure law is satisfied.

ii) \oplus is associative in $\{E, O\}$

iii) *E* is the identity element of w.r.t to \oplus

iv) As O + O = E and E + E = E, thus inverse of *O* is *O* and inverse of *E* is *E*. v) As the table is symmetric about the principle diagonal therefore \oplus is commutative. Hence $\{E, O\}$ is abelian group under \oplus .

Ø Question # 5

Suppose $G = \{1, w, w^2\}$

i) A table show that all the entries belong to *G*.

ii) Associative law holds in G w.r.t. multiplication.

e.g. $1 \times (w \times w^2) = 1 \times 1 = 1$ $(1 \times w) \times w^2 = w \times w^2 = 1$

iii) Since $1 \times 1 = 1$, $1 \times w = w \times 1 = w$, $1 \times w^2 = w^2 \times 1 = w^2$

Thus 1 is an identity element in *G*.

iv) Since $1 \times 1 = 1 \times 1 = 1$, $w \times w^2 = w^2 \times w = 1$, $w^2 \times w = w \times w^2 = 1$

therefore inverse of 1 is 1, inverse of w is w^2 , inverse of w^2 is w.

v) As table is symmetric about principle diagonal therefore commutative law holds in G. Hence G is an abelian group under multiplication.

Ø Question # 6

Given that G is a group under the operation * and $a, b \in G$ such that

a * x = bAs $a \in G$ and G is group so $a^{-1} \in G$ such that $a^{-1} * (a * x) = a^{-1} * b$ $\Rightarrow (a^{-1} * a) * x = a^{-1} * b$ as associative law hold in G. $\Rightarrow e * x = a^{-1} * b$ by inverse law. $\Rightarrow x = a^{-1} * b$ by identity law.

And for

x * a = b $\Rightarrow (x * a) * a^{-1} = b * a^{-1} \qquad \text{For } a \in G, \ a^{-1} \in G$ $\Rightarrow x * (a * a^{-1}) = b * a^{-1} \qquad \text{as associative law hold in } G.$ $\Rightarrow x * e = b * a^{-1} \qquad \text{by inverse law.}$ $\Rightarrow x = b * a^{-1} \qquad \text{by identity law.}$

Ø Question # 7

Consider $G = \left\{ a + \sqrt{3} b \mid a, b \in \mathbb{Q} \right\}$ i) Let $a + \sqrt{3}b, c + \sqrt{3}d \in G$, where a, b, c & d are rational. $\left(a + \sqrt{3}b \right) + \left(c + \sqrt{3}d \right) = \left(a + c \right) + \sqrt{3}\left(b + d \right) = a' + \sqrt{3}b' \in G$

where a' = a + c and b' = b + d are rational as sum of rational is rational. Thus closure law holds in G under addition.

\oplus	Ε	0
E	Ε	0
0	0	Ε

\otimes	1	W	W^2
1	1	W	\boldsymbol{W}^2
W	W	\boldsymbol{W}^2	1
w^2	w^2	1	W

ii) For
$$a + \sqrt{3}b, c + \sqrt{3}d, e + \sqrt{3}f \in G$$

 $(a + \sqrt{3}b) + ((c + \sqrt{3}d) + (e + \sqrt{3}f)) = (a + \sqrt{3}b) + ((c + e) + \sqrt{3}(d + f))$
 $= (a + (c + e)) + \sqrt{3}(b + (d + f))$
 $= ((a + c) + e) + \sqrt{3}((b + d) + f)$
As associative law hold in \mathbb{Q}
 $= ((a + c) + \sqrt{3}(b + d)) + (e + \sqrt{3}f)$
 $= ((a + \sqrt{3}b) + (c + \sqrt{3}d)) + (e + \sqrt{3}f)$

Thus associative law hold in G under addition.

iii)
$$0 + \sqrt{3} \cdot 0 \in G$$
 as 0 is a rational such that for any $a + \sqrt{3b} \in G$
 $(a + \sqrt{3b}) + (0 + \sqrt{3} \cdot 0) = (a + 0) + \sqrt{3}(b + 0) = a + \sqrt{3b}$

And
$$(0 + \sqrt{3} \cdot 0) + (a + \sqrt{3}b) = (0 + a) + \sqrt{3}(0 + b) = a + \sqrt{3}b$$

Thus $0 + \sqrt{3} \cdot 0$ is an identity element in *G*.

iv) For
$$a + \sqrt{3b} \in G$$
 where a & b are rational there exit rational $-a \& -b$ such that

$$(a + \sqrt{3}b) + ((-a) + \sqrt{3}(-b)) = (a + (-a)) + \sqrt{3}(b + (-b)) = 0 + \sqrt{3} \cdot 0$$

& $((-a) + \sqrt{3}(-b)) + (a + \sqrt{3}b) = ((-a) + a) + \sqrt{3}((-b) + b) = 0 + \sqrt{3} \cdot 0$

Thus inverse of $a + \sqrt{3}b$ is $(-a) + \sqrt{3}(-b)$ exists in *G*. v) For $a + \sqrt{3}b$, $c + \sqrt{3}d \in G$

$$(a+\sqrt{3}b)+(c+\sqrt{3}d) = (a+c)+\sqrt{3}(b+d)$$
$$= (c+a)+\sqrt{3}(d+b)$$
As commutative law hold in \mathbb{Q} .
$$= (c+d\sqrt{3})+(a+\sqrt{3}b)$$

Thus Commutative law holds in G under addition. And hence G is an abelian group under addition.

Ø Question 8

Let $A, B \in P(S)$ where A & B are subsets of S.

As intersection of two subsets of *S* is subset of *S*.

Therefore $A * B = A \cap B \in P(S)$. Thus closure law holds in P(S).

For $A, B, C \in P(S)$

 $A * (B * C) = A \cap (B \cap C) = (A \cap B) \cap C = (A * B) * C$

Thus associative law holds and P(S).

And hence (P(S),*) is a semi-group.

For $A \in P(S)$ where A is a subset of S we have $S \in P(S)$ such that $A \cap S = S \cap A = A$.

Thus S is an identity element in P(S). And hence (P(S),*) is a monoid.

Ø Question 9

Let x_1 and x_2 be the required elements.

By associative law (a*a)*a = a*(a*a) $\Rightarrow c*a = a*c$ $\Rightarrow x_1 = b$ Now again by associative law

(a*a)*b = a*(a*b) $\Rightarrow c*b = a*a \Rightarrow x_2 = c$

*	a	b	С
а	С	a	b
b	а	b	С
С	x_1	<i>x</i> ₂	a

FSc-I / 2.8 - 4

Question 10

Let G be the all non-singular 2×2 matrices over the real field.

i) Let $A, B \in G$ then $A_{2\times 2} \times B_{2\times 2} = C_{2\times 2} \in G$

Thus closure law holds in G under multiplication.

ii) Associative law in matrices of same order under multiplication holds.

therefore for $A, B, C \in G$

$$A \times (B \times C) = (A \times B) \times C$$

iii) $I_{2\times 2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is a non-singular matrix such that

$$A_{2\times 2} \times I_{2\times 2} = I_{2\times 2} \times A_{2\times 2} = A_{2\times 2}$$

Thus $I_{2\times 2}$ is an identity element in G.

iv) Since inverse of non-singular square matrix exists,

therefore for $A \in G$ there exist $A^{-1} \in G$ such that $AA^{-1} = A^{-1}A = I$.

v) As we know for any two matrices $A, B \in G$, $AB \neq BA$ in general.

Therefore commutative law does not holds in G under multiplication.

Hence the set of all 2×2 non-singular matrices over a real field is a non-abelian group under multiplication.

The End

QUOTATIONS

b The tragedy of life is not that it ends so soon, but that we wait so long to begin it. W. M. Lewis

b It is neither good nor bad, but thinking makes it so.

William Shakespeare

b Why fear death? It is the most beautiful adventure in life.

Charles Frohman

b An unfortunate thing about this world is that the good habits are much easier to give up than the bad ones.

W. Somerset Maugham

b The truth is that life is delicious, horrible, charming, frightful, sweet, bitter, and that it is everything.

Anatole France

b There is big difference between getting ready to act and starting to act. Many are forever ready to act.

Anonymous

.....